Structure-Function Studies of Epoxide Hydrolases
نویسنده
چکیده
Epoxides are three-membered cyclic ethers formed in cells via several metabolic pathways. Epoxide hydrolases (EHs) are enzymes that hydrolyse epoxides to the corresponding diols. The main goal of this thesis was to investigate the structures of EHs from the / -hydrolase family. The first part concerns the structural and functional analysis of a protein-water channel found in EHs in many plants. Thermostability studies, sequence analysis and determination of the x-ray structure of a mutated EH enzyme from Solanum tuberosum led to the conclusions that the water channel in plants participates in stabilization of the protein structure and furthermore, it forms an efficient system to enable transfer of protons that are required for enzymatic catalysis. The second part describes how computational methods together with structural and kinetic information identified factors that are responsible for the enhanced enantioselectivity of an improved variant of EH from Aspergillus niger obtained during a directed evolution process. The x-ray structure of the mutant showed that dramatic changes in the active site explain why the preferred (S)-substrate binds more easily in the active site than the disfavored (R)-enantiomer. The study underscores the importance of obtaining structural data when attempting to understand the results of directed evolution. The last part presents the structures of two novel microbial EHs that have been shown to produce chemically valuable 1,2-diols and exhibit high enantioselectivity. Their similarity to the mammalian microsomal EH, a key enzyme in detoxification, provided new information about its possible structure. The improved sequence alignment based on the structural work gives new insights on the connections between sequences/structures and the broad scope of selectivities among EHs.
منابع مشابه
Enhancement of Soluble Expression and Biochemical Characterization of Two Epoxide Hydrolases from Bacillus
Background: Enantiopure epoxides are important intermediates in the synthesis of high-value chiral chemicals. Epoxide hydrolases have been exploited in biocatalysis for kinetic resolution of racemic epoxides to produce enantiopure epoxides and vicinal diols. It is necessary to obtain sufficient stable epoxide hydrolases with high enantioselectivity to meet the requirements of i...
متن کاملStructure of an atypical epoxide hydrolase from Mycobacterium tuberculosis gives insights into its function.
Epoxide hydrolases are vital to many organisms by virtue of their roles in detoxification, metabolism and processing of signaling molecules. The Mycobacterium tuberculosis genome encodes an unusually large number of epoxide hydrolases, suggesting that they might be of particular importance to these bacteria. We report here the first structure of an epoxide hydrolase from M.tuberculosis, solved ...
متن کاملThe database of epoxide hydrolases and haloalkane dehalogenases: one structure, many functions
UNLABELLED The epoxide hydrolases and haloalkane dehalogenases database (EH/HD) integrates sequence and structure of a highly diverse protein family, including mainly the Asp-hydrolases of EHs and HDs but also proteins, such as Ser-hydrolases non-heme peroxidases, prolyl iminopetidases and 2-hydroxymuconic semialdehyde hydrolases. These proteins have a highly conserved structure, but display a ...
متن کاملStructure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site.
Epoxide hydrolases are essential for the processing of epoxide-containing compounds in detoxification or metabolism. The classic epoxide hydrolases have an alpha/beta hydrolase fold and act via a two-step reaction mechanism including an enzyme-substrate intermediate. We report here the structure of the limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis, solved using single-wavelength ...
متن کاملExported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection
Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs). EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids) by epoxide hydrolases (EHs). The malaria parasite Plasmodium falciparum infects host red blood cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010